EPDM (Caucho etileno propileno)

Introducción

Los cauchos y elastómeros de etileno-propileno (también llamados EPM y EPDM) son unos de los cauchos sintéticos más usados y de mayor crecimiento para propósitos generales y específicos. Se vendieron cerca de 870 toneladas métricas (1,9 billones de libras) desde su introducción comercial en la década del 60. Las tecnologías de polimerización y catálisis, hoy en uso, proveen la habilidad de diseñar polímeros para satisfacer la demanda y de aplicaciones específicas y las necesidades de procesamiento. La versatilidad en el diseño y performance del polímero ha resultado en el amplio uso en juntas de hermeticidad para autos, burletes para vidrio, mangueras para radiador, jardín y riego, tubos, cinturones, aislante eléctrico, membranas para techos, modificador de impacto en plásticos, vulcanizado de termoplásticos y aditivos para aceite de motor.

Es un caucho de muy reciente historia, pues su origen data de 1961, cuando consiguió los primeros trabajos el profesor K. Ziegler, al polimerizar las olefinas y oleínas con alto peso molecular. Sin embargo, el polímero inicial de etileno-propileno no pudo salir al mercado hasta el año 1964, fecha en que descubrió el mismo profesor cómo reticulaba el elastómero con una aportación de azufre (4%) e incorporación de un tercer monómero, y adquiría el compuesto propiedades visco-elásticas.

Propiedades y características
Los cauchos de etileno-propileno se destacan por su resistencia al calor, oxidación, ozono y a la intemperie debido a su estructura polimérica de cadena saturada. Como elastómeros no polares, tienen buena resistividad eléctrica y resistencia a solventes polares, como agua, ácidos, álcalis, ésteres fosfatados y muchas cetonas y alcoholes. Los grados amorfos o de baja cristalinidad tienen excelente flexibilidad a baja temperatura con una temperatura de transición vítrea de -60°C.
Resistencias al agrietamiento por calor a temperaturas de 130°C pueden ser obtenidas mediante sistemas de vulcanización con azufre y resistencias al calor de hasta 160°C pueden obtenerse mediante cura con sistemas de peróxido. La resistencia a la compresión es buena, particularmente a altas temperaturas, si son utilizados sistemas de curado basados en azufre o peróxidos.
Estos polímeros responden de forma aceptable incluso con altas cargas de relleno y plastificante disminuyendo su precio. Estos incluso pueden desarrollar alta resistencia al desgarro y a la tracción, excelente resistencia a la abrasión, como así también, se ve mejorada su resistencia al hinchamiento por aceite y su retardo a la llama.

Propiedades generales de los elastómeros de etileno-propileno

Propiedades del polímero

Valor

Viscosidad Mooney ML 1+4 @ 125°C

5-200+

Contenido de etileno

45 a 80% en peso

Contenido de dieno

0 a 15% en peso

Densidad

0,86 a 0,87g / cm3

Propiedades vulcanizado

Valor

Dureza (Shore A)

30 a 95

Resistencia a la tracción

7 a 21MPa

Elongación

100 a 600%

Compresión

20 a 60%

Temperatura de trabajo

-50 a 160°C

Resistencia al desgarro

Mediana a buena

Resistencia a la abrasión

Buena a excelente

Elasticidad

Mediana a buena

Propiedades eléctricas

Excelentes

Los rangos pueden ser mayores dependiendo la composición. No todas las propiedades pueden lograrse en un mismo compuesto.

Estructura y síntesis química
Los cauchos de etileno-propileno son sintetizados tanto en bloques o a partir de monómeros como los polímeros termoplásticos polipropileno y polietileno. El etileno y el propileno son combinados al azar para producir polímeros elásticos y estables. Una amplia familia de elastómeros de etileno-propileno pueden ser producidos alcanzando desde estructuras amorfas no cristalinas hasta semi-cristalinas dependiendo de la composición del polímero y de cómo son combinados. Estos polímeros también son producidos en un amplio rango de viscosidades Mooney (o pesos moleculares).
El etileno y el propileno se combinan para formar un polímero de cadena carbonada saturada, químicamente estable generando una excelente resistencia al calor, a la oxidación, al ozono, y a la intemperie. Un tercer monómero dieno no conjugado puede ser terpolimerizado de forma controlada para mantener la cadena saturada y una zona reactiva no saturada a un lado de la cadena principal susceptible de sufrir vulcanización o modificación química del polímero. Los terpolímero son denominados EPDM (etileno-propileno-dieno con la M haciendo referencia a la estructura de cadena saturada). El copolímero etileno-propileno se denomina EPM.

                                              Estructura química del EPDM con ENB 

Hay dos clases de terpolímero comúnmente utilizados, principalmente el etiliden norboneno (ENB) seguido de diciclopentadieno (DCPD). Cada dieno se incorpora con una diferente tendencia para introducir una larga cadena ramificada o polímeros con cadenas laterales que influyen en el procesado y el grado de curado por vulcanización con azufre o peróxido. Una diferencia importante que introduce el dieno es la posibilidad de un centro reactivo propicio para la vulcanización con azufre a diferencia del EPM que no puede ser vulcanizado con azufre por carecer de insaturaciones en su cadena carbonada.

Tabla de comparación según el dieno utilizados

Dieno

Cura

Propiedades obtenidas

Cadenas largas ramificadas

ENB

Rápido y alto grado de curado

Buena resistencia a la tracción y compresión

De media a baja

DCPD

Lento curado con azufre

Buena resistencia a la compresión

Elevada

Otro tercer monómeros utilizado, aunque menos frecuente es el vinil norborneno (VNB). Los dienos, por lo general comprenden desde el 2,5% hasta un 12% en peso de la composición, sirven como enlaces cruzados para el curado con azufre y funcionan como un coagente en el curado con peróxidos.

Catalizadores especiales son utilizados para polimerizar los monómeros en estructuras poliméricas controladas. Desde un comienzo, en los elastómeros de etileno-propileno, han sido utilizadas una familia de catalizadores denominados de Ziegler-Natta. Las mejoras en los catalizadores y procesos dieron como resultado el incremento de la productividad manteniendo la estructura del polímero. Estos catalizadores se forman in situ por reacción de las sales de vanadio y haluros de alquilo-aluminio. Más recientemente, una nueva familia de catalizadores, denominadas metaloceno, fue desarrollada y utilizada en la producción comercial de elastómeros de etileno-propileno.

Procesos de fabricación
Existen tres grandes procesos comerciales de polimerización de caucho etileno-propileno: en solución, en suspensión y en fase gaseosa. Los sistemas de producción varían según el productor. Hay diferencias en el grado del producto obtenido dependiendo de cada productor y proceso usado, pero todos son capaces de generar una variedad de polímero de EPM o EPDM. La forma física puede variar desde sólidos como balas, pellets y gránulos a mezclas con aceites.

El proceso de polimerización en solución es el más ampliamente utilizado y su gran versatilidad logra una amplia gama de polímeros. El sistema de etileno, propileno y catalizador son polimerizados en exceso de solvente hidrocarbonado. Si son utilizados estabilizadores y aceites, estos son añadidos directamente después de la polimerización. El solvente y monómeros no reaccionados son entonces separados mediante agua caliente, vapor o mediante evaporación mecánica. El polímero, el cual se halla en forma de grumos, es secado mediante eliminación del agua en tornillos, prensas mecánicas y/o hornos de secado. Los grumos secos son luego conformados en balas o extruidos en pellets. Los polímeros de alta viscosidad son vendidos a granel en forma de balas desmenuzadas o pellets. Los grados amorfos son comercializados comúnmente en balas sólidas

El proceso de polimerización en suspensión es una modificación de la polimerización en masa. El sistema de monómeros y catalizador es inyectado en un reactor lleno con propileno. La polimerización tiene lugar en forma inmediata, formando grumos de polímero que no es soluble en el propileno. La polimerización en suspensión reduce la necesidad de solvente y equipos para la manipulación del solvente y la baja viscosidad de la suspensión ayuda al control de la temperatura del proceso y a la manipulación del producto. El proceso no está limitado por la viscosidad de la solución, de forma que polímeros con altos pesos moleculares pueden ser producidos sin un proceso adicional. La eliminación del propileno y termonómero completan el proceso antes del conformado y embalado del producto. 

La tecnología para polimerización en estado gaseoso fue recientemente desarrollada para la obtención de cauchos de etileno-propileno. El reactor consiste en un lecho fluidizado vertical. Los monómeros y nitrógeno en forma de gas con el catalizador son introducidos al reactor y el producto sólido es removido periódicamente. El calor de reacción es retirado mediante la circulación de gas que además sirve para generar el lecho fluido. No son utilizados solventes, eliminando la necesidad de una etapa posterior de eliminación, lavado y secado. Este proceso tampoco está limitado por la viscosidad de la solución, con lo que se logran polímeros con altos pesos moleculares sin afectar la productividad. Se inyecta una cantidad sustancial de negro de humo al reactor como un ayudante de fluidización para prevenir que se peguen los gránulos de polímeros formados entre sí o en las paredes del reactor. Pero los productos preparados incluso con unos niveles bajos de negro de carbono son completamente negros y no resultan satisfactorios para aplicaciones que requieren productos coloreables. Agentes coadyuvantes blancos coloreables de la fluidización incluyen diferentes tipos de sílices calcinadas, arcillas, talco y carbonato de calcio. Un problema principal, de la adición de estos coadyuvantes de la fluidización blancos coloreables durante la producción, es su tendencia a generar unas fuertes cargas estáticas negativas lo que, en condiciones de polimerización, conduce a que se acumule resina sobre las paredes del reactor. Lo que puede ser salvado con la utilización de algún agente antiestático.
El producto obtenido se forma en gránulos para permitir un rápido mezclado posterior.

Productores
Los mayores productores y proveedores de EPM y EPDM son Bayer Polymers, Crompton Corp., Exxon-Mobil Chemical Co., DSM Elastomers, Dupont Dow Elastomers, Herdillia, JSR, Kumho Polychem, Mitsui Chemicals, Polimeri Europa y Sumitomo Chemical Co.

Procesado y vulcanización

El procesado, la vulcanización y las propiedades físicas de los elastómeros de etileno-propileno son en gran medida controlados por las características de contenido de etileno, contenido de dieno, peso molecular (viscosidad Mooney) y la distribución del peso molecular. Por ejemplo, disminuyendo el contenido de etileno disminuye la cristalinidad y las propiedades asociadas como dureza y módulo.

Contenido de dieno

Los copolímeros etileno-propileno sólo puede ser reticulado con peróxidos o radiación. Mientras que los terpolímeros etileno-propileno-dieno pueden ser reticulados tanto con peróxidos como con azufre. The cure rate and the crosslink density increase with increasing diene content. La grado de curado y la densidad de reticulación se incrementa con el aumento del contenido de dieno.

Los terpolímeros con altos niveles de ENB son especialmente adecuados para la producción de perfiles por vulcanización continua a baja presión o para co-vulcanización de cauchos de dieno.

Contenido de etileno

La distribución del comonómero de propileno puede variar de azar a alternante. Si los contenidos de etileno y propileno son aproximadamente iguales, ambos monómeros dentro de la molécula del polímero se distribuyen por igual, es decir, el caucho es amorfo.

Si el contenido de etileno es más o menos 65% en peso, las secuencias de etileno crecen en número y longitud. Estas secuencias son capaces de formar cristales. Propileno interrumpe secuencias largas de etileno y les impide cristalizar:

- En los bajos niveles de propileno (por debajo del 35 por ciento en peso), una pequeña cantidad de cristalinidad está presente, lo que proporciona al EPM buena resistencia en verde.

- En los altos niveles de propileno (por encima de 50 por ciento en peso), sólo existen cortas secuencias de etileno en la cadena del polímero provocando que no haya cristalinidad.

En el vulcanizado, una mayor cristalinidad del polímeros resulta en una resistencia a la tracción mejorada y una mayor dureza, pero también con una mayor resistencia a la compresión en bajas temperaturas.

Otros efectos del aumento de contenido de etileno incluyen:

- Mejora la resistencia verde en frío.

- Extrusión buena

- Alta capacidad de llenado con carga y plastificante.

Peso molecular

El peso molecular del caucho EP se puede variar dentro de un rango relativamente amplio durante la polimerización. En general, las de mayor peso molecular proporcionan las siguientes propiedades:

- Mayor resistencia en verde a temperaturas elevadas

- Mayor capacidad para relleno / carga de aceite.

- Compresión inferior

- Mejor resistencia a la rotura

El peso molecular del polímero tiene una influencia considerable en la resistencia al colapso de extruidos a temperaturas elevadas. Esta es una propiedad de especial importancia para la producción continua de productos de extrusión. Otro factor que tiene influencia es la distribución del peso molecular.

La viscosidad Mooney de EPDM da una indicación del peso molecular del polímero.

Tabla resumen de características generales de los elastómeros de etileno-propileno

Característica

Elevado

Bajo

Contenido de etileno

Buena resistencia a la tracción en verde

Mejora extrusión

Elevada resistencia a la tracción y módulo

Alta carga (reduce costos)

Baja temperatura de flexión

Baja dureza y módulo

Mejora calandrado y molienda

Contenido de dieno

Diferentes grados de curado

Mayor versatilidad

Buena resistencia a la compresión

Módulo elevado

Resistencia al quemado

Alta estabilidad térmica

Baja dureza y módulo

Peso molecular

Buena resistencia a la tracción, desgarro y módulo

Elevada carga

Buena resistencia en verde

Resistencia al colapsado

Facilidad para el mezclado

Mejores grados para extrusión

Mejora calandrado

Baja viscosidad

Resistencia al quemado

Distribución del peso molecular

Mejora el procesado (extrusión, calandrado y molienda)

Resistencia al colapsado

Curado elevado

Bajo hinchamiento

Dificulta procesado

Aplicaciones principales
Vehículos

El caucho EPDM se utiliza comúnmente en sellante en todos los vehículos. Esto incluye sellos de las puertas, juntas de ventanas, sellos de la carrocería, y, a veces juntas para el capote.

En general, EPDM se utiliza especialmente en las mangueras en el circuito del sistema de enfriamiento de un automóvil. 

Además, el EPDM puede ser utilizado como tubo de carga de aire en motores turbo. Más específicamente, se puede utilizar para conectar el lado frío del refrigerador de aire de carga (también conocido como "intercooler") para el colector de admisión.

Sellado de puertas de cámaras frigoríficas
El EPDM ofrece una buena performance en el aislamiento térmico. Se utiliza en puertas de cámaras frigoríficas para el sellado.

Equipo de seguridad
Los cauchos de etileno-propileno se utilizan también como material para las juntas de la cara de los respiradores industriales, con mayor frecuencia elegida ya que el uso de la silicona se debe evitar por lo general en ambientes con pintura en aerosol de industrias automotrices. 

Aislamiento de cables
El EPDM se utiliza también como material para la envoltura exterior de los cables utilizados en los aparatos eléctricos para la instalación al aire libre o expuestas a la luz UV. 

Impermeabilización de techos
El EPDM se utiliza como revestimiento a prueba de agua de techos. Tiene la ventaja de que no contamina el agua de lluvia escurrida, que es de vital importancia si el dueño de casa desea utilizar esta agua para la higiene personal. Varias casas cuentan con acumuladores de agua de lluvia por lo tanto deben hacer uso de este tipo de techos


ESTE SITIO FUE CONSTRUIDO USANDO